Given:
The compound inequality is:
![3\leq 3x-4<2x+1](https://img.qammunity.org/2022/formulas/mathematics/high-school/pt7fnm6dg1sjfqd3xv8xkuzcwgkd60omx5.png)
To find:
The integer solutions for the given compound inequality.
Solution:
We have,
![3\leq 3x-4<2x+1](https://img.qammunity.org/2022/formulas/mathematics/high-school/pt7fnm6dg1sjfqd3xv8xkuzcwgkd60omx5.png)
Case 1:
![3\leq 3x-4](https://img.qammunity.org/2022/formulas/mathematics/high-school/zf06cg96va6xwxg33327iiiuw4yk56aogz.png)
![3+4\leq 3x](https://img.qammunity.org/2022/formulas/mathematics/high-school/d9h9w3hh5qk4s31z39p9txcv4y48e2ov35.png)
![(7)/(3)\leq x](https://img.qammunity.org/2022/formulas/mathematics/high-school/1ow7dtw5pwtzqqkrcc6w98ba8uzcg3tcuu.png)
...(i)
Case 2:
![3x-4<2x+1](https://img.qammunity.org/2022/formulas/mathematics/high-school/rp9wroud72q1495eirge2z60r59kzqqkc5.png)
![3x-2x<1+4](https://img.qammunity.org/2022/formulas/mathematics/high-school/19t8cunzzjwef84k5muhh7nkhggtb19h3u.png)
...(ii)
Using (i) and (ii), we get
![2.33...<x<5](https://img.qammunity.org/2022/formulas/mathematics/high-school/mly59nw3yobr56oh31uf5r5gtq32kp0lgt.png)
The integer values which satisfy this inequality are only 3 and 4.
Therefore, the integer solutions to the given inequality are 3 and 4.