221k views
0 votes
WHO CAN solve it Please !

WHO CAN solve it Please !-example-1
User Hectorpal
by
3.3k points

1 Answer

5 votes

Answer:

a) True


\int\limits^\pi _ {0} \,(\sqrt{1-sin^(2)\alpha } )d\alpha =0

Explanation:

Step(i):-

Given that the definite integration


\int\limits^\pi _ {0} \,(\sqrt{1-sin^(2)\alpha } )d\alpha

we know that the trigonometric formula

sin²∝+cos²∝ = 1

cos²∝ = 1-sin²∝

step(ii):-

Now the integration


\int\limits^\pi _ {0} \,(\sqrt{1-sin^(2)\alpha } )d\alpha = \int\limits^\pi _0 {(\sqrt{cos^(2) \alpha } } \, )d\alpha

=
\int\limits^\pi _0 {cos\alpha } \, dx

Now, Integrating


= ( sin\alpha )_(0) ^(\pi )

= sin π - sin 0

= 0-0

= 0

Final answer:-


\int\limits^\pi _ {0} \,(\sqrt{1-sin^(2)\alpha } )d\alpha =0

User SJC
by
3.7k points