449,644 views
6 votes
6 votes
Find five consecutive odd integers if the sum of the first three integers is 3 more than the sum of the last two

User Szx
by
2.3k points

2 Answers

8 votes
8 votes

Answer: 11, 13, 15, 17, and 19

User DWX
by
3.1k points
16 votes
16 votes

Let the integers be:

  • 2k+1
  • 2k+3
  • 2k+5
  • 2k+7
  • 2k+9

It is one of the general forms to write an odd Integer..

ATQ,


\rm(2k + 1) + (2k + 3) + (2k + 5) = (2k + 7) + (2k + 9) + 3

Using the equation Solve for K and then we will find the integers


\rm \: (2k + 1) + 2k + 3 + (2k + 5) = 2k + 7 + 2k + 9 + 3


\rm2k + 1 + 2k + 2k + 5 = 2k + 7 + 2k + 9


\rm \: 1 + 2k + 5 = 7 + 9


\rm \: 6 + 2k = 16


\rm \: 2k = 16 - 6


\rm \: 2k = 10


\boxed{ \tt \: k = 5}

Now,


\large{|\underline{\mathtt{\red{1 ^(st) }\blue{ \: }\orange{i}\pink{n}\blue{t}\purple{e}\green{g}\red{e}\blue{r}\orange{ : }\green{ - }\red{}\purple{}\pink{}}}}


\sf \: 2k + 1 \\ \sf 2 * 5 + 1 \\ \sf \: 10 + 1 = 11


\large{|\underline{\mathtt{\red{2 ^(nd) }\blue{ \: }\orange{i}\pink{n}\blue{t}\purple{e}\green{g}\red{e}\blue{r}\orange{ : }\green{ - }\red{}\purple{}\pink{}}}}


\sf \: 2k + 3 \\ \sf 2 * 5 + 3\\ \sf \: 10 + 3 = 13


\large{|\underline{\mathtt{\red{3 ^(rd) }\blue{ \: }\orange{i}\pink{n}\blue{t}\purple{e}\green{g}\red{e}\blue{r}\orange{ : }\green{ - }\red{}\purple{}\pink{}}}}


\sf \: 2k + 5 \\ \sf 2 * 5 + 5\\ \sf \: 10 + 5 = 15


\large{|\underline{\mathtt{\red{4^(th) }\blue{ \: }\orange{i}\pink{n}\blue{t}\purple{e}\green{g}\red{e}\blue{r}\orange{ : }\green{ - }\red{}\purple{}\pink{}}}}


\sf \: 2k + 7 \\ \sf 2 * 5 + 7\\ \sf \: 10 + 7= 17


\large{|\underline{\mathtt{\red{5 ^(th) }\blue{ \: }\orange{i}\pink{n}\blue{t}\purple{e}\green{g}\red{e}\blue{r}\orange{ : }\green{ - }\red{}\purple{}\pink{}}}}


\sf \: 2k + 9 \\ \sf 2 * 5 + 9\\ \sf \: 10 + 9= 19

Thus, The five consecutive odd integers are 11,13,15,17,19...~

User DIVYANSHU SAHU
by
2.7k points