Answer:
The logs do not form a right-angle triangle
Explanation:
Given
![Logs: 9ft, 11ft, 21ft](https://img.qammunity.org/2022/formulas/mathematics/college/mitgbprw37o83wmpajxsihu6kbr29762rk.png)
Required
Do the logs form a right-angled triangle
Applying Pythagoras theorem
![a^2 = b^2 + c^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/kw76cxh9wnfrr9jdwxa1s0wd2flypzwf9a.png)
Where a is the length of the longest log.
So, we have:
![21^2 = 9^2 + 11^2](https://img.qammunity.org/2022/formulas/mathematics/college/dltlf6k9mswscl7waosffouei2t11evxn2.png)
![441 = 81 + 121](https://img.qammunity.org/2022/formulas/mathematics/college/jh4dz938r9bp0ycnuhbqdqs37ib3xv6xb6.png)
![441 \\e 202](https://img.qammunity.org/2022/formulas/mathematics/college/4fjdqs249sstwj2mpcskksqylsxmmdc1of.png)
The above shows an inequality.
Hence, the logs do not form a right-angle triangle