Given:
A figure of an isosceles trapezoid with bases 18 and 24, and the vertical height is 4.
To find:
The legs of the isosceles trapezoid.
Solution:
Draw another perpendicular and name the vertices as shown in the below figure.
From the figure it is clear that the AEFD is a rectangle. So,
![EF=AD=18](https://img.qammunity.org/2022/formulas/mathematics/high-school/h4n14snb61cud0e0hynzq2uqo0g7gholvn.png)
Since ABCD is an isosceles trapezoid, therefore in triangle ABE and DCF,
(Legs of isosceles trapezoid)
(Vertical height of isosceles trapezoid)
(Right angle)
(HL postulate)
(CPCTC)
Now,
![BE+EF+FC=BC](https://img.qammunity.org/2022/formulas/mathematics/high-school/uuyqmjogrfj8ds5a1u1w1njx4or2a3w04c.png)
![2BE+18=24](https://img.qammunity.org/2022/formulas/mathematics/high-school/gkmomy7vlh19224g2hc9t67h96ue5cfajw.png)
![2BE=24-18](https://img.qammunity.org/2022/formulas/mathematics/high-school/5esi02s98ix54wiv8itwtx12wd7qx03r78.png)
![2BE=6](https://img.qammunity.org/2022/formulas/mathematics/high-school/hfldvc9d6ol7bneaayvgfv0ogr37bt1nag.png)
![BE=3](https://img.qammunity.org/2022/formulas/mathematics/high-school/qycs1zmqkjl44bxj6co1jjxmu6ve19nq8o.png)
Using Pythagoras theorem in triangle ABE, we get
![Hypotenuse^2=Perpendicular^2+Base^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/3zn4vlnu4j21orvy1kj5rkhpjumhcw9s9n.png)
![(AB)^2=(AE)^2+(BE)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/axzv1vx55b9u54m9jf87a7zjc4tgu3sl89.png)
![(AB)^2=(4)^2+(3)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/lgppydoxtx6bvpygus6vbxki45sboiuczj.png)
![(AB)^2=16+9](https://img.qammunity.org/2022/formulas/mathematics/high-school/bbgn23e51mz9k4bzyulhrdyfmz1ylzyk3a.png)
![(AB)^2=25](https://img.qammunity.org/2022/formulas/mathematics/high-school/8dal6k04bvg5igyk2pbacgkrbtqhwxnieo.png)
Taking square root on both sides, we get
![AB=\pm √(25)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rcbtdl3rfuustt8ryw0ov6w53nsu82h9x0.png)
![AB=\pm 5](https://img.qammunity.org/2022/formulas/mathematics/high-school/7stq7ay4cemj1giutzpexz0u7icb8gi87q.png)
Side length cannot be negative. So,
.
Therefore, the length of legs in the given isosceles trapezoid is 5 units.