102,648 views
44 votes
44 votes
Repost: Каков объем этой прямоугольной призмы?

45 кубических дюймов

81 кубический дюйм

180 кубических дюймов

405 кубических дюймов
(english: What is the volume of this rectangular prism?


45 cubic inches


81 cubic inches


180 cubic inches


405 cubic inches

Repost: Каков объем этой прямоугольной призмы? 45 кубических дюймов 81 кубический-example-1
User Mrfelis
by
3.2k points

1 Answer

17 votes
17 votes

So first of all we should know that the rectangular prism is a cuboid.


\\ \\

Given :-

  • heigth = 9 in.
  • Length = 5 in.
  • Width = 4 in.


\\

To find:-

  • Volume of cuboid.


\\

Solution:-

We know:-


\bigstar \boxed{ \rm volume \: of \: cuboid = length * width * height}


\\ \\

So:-


\dashrightarrow \sf volume \: of \: cuboid = length * width * height \\


\\ \\


\dashrightarrow \sf volume \: of \: cuboid = 9 * 5 * 4 \\


\\ \\


\dashrightarrow \sf volume \: of \: cuboid = 45 * 4 \\


\\ \\


\dashrightarrow \bf volume \: of \: cuboid = 180 {in}^(3) \\

Therefore option C is correct .


\\ \\

know more:-


\\ \\


\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_((cylinder)) = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_((cylinder)) = \pi {r}^(2) h}\\ \\ \bigstar \: \bf{TSA_((cylinder)) = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_((cone)) = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_((cone)) = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_((sphere)) = (4)/(3)\pi {r}^(3) }\\ \\ \bigstar \: \bf{Volume_((cube)) = {(side)}^(3) }\\ \\ \bigstar \: \bf{CSA_((cube)) = 4 {(side)}^(2) }\\ \\ \bigstar \: \bf{TSA_((cube)) = 6 {(side)}^(2) }\\ \\ \bigstar \: \bf{Volume_((cuboid)) = lbh}\\ \\ \bigstar \: \bf{CSA_((cuboid)) = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_((cuboid)) = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

User HetOrakel
by
3.0k points