183k views
1 vote
Simplify. (Assume all variables represent positive real numbers). Leave answer in radical form.


\sqrt128a^(6)b^(13)

1 Answer

3 votes

Answer:


\sqrt{128a^(6)b^(13)} = 8 a^(3) b^(6) √(2b)

Explanation:

Given


\sqrt{128a^(6)b^(13)}

Required

Solve


\sqrt{128a^(6)b^(13)}

The expression can be split to:


\sqrt{128a^(6)b^(13)} = √(128) * \sqrt{a^(6)} * \sqrt{b^(13)}


\sqrt{128a^(6)b^(13)} = √(64 * 2) * \sqrt{a^(6)} * \sqrt{b^(13)}


\sqrt{128a^(6)b^(13)} = √(64) * √(2) * \sqrt{a^(6)} * \sqrt{b^(13)}


\sqrt{128a^(6)b^(13)} = √(64) * √(2) * \sqrt{a^(6)} * \sqrt{b^(12 + 1)}


\sqrt{128a^(6)b^(13)} = √(64) * √(2) * \sqrt{a^(6)} * \sqrt{b^(12)} * √(b)

So, we have:


\sqrt{128a^(6)b^(13)} = 8 * √(2) * a^(6/2) * b^(12/2) * √(b)


\sqrt{128a^(6)b^(13)} = 8 * √(2) * a^(3) * b^(6) * √(b)

Rewrite as:


\sqrt{128a^(6)b^(13)} = 8 * a^(3) * b^(6)* √(2) * √(b)


\sqrt{128a^(6)b^(13)} = 8 a^(3) b^(6)* √(2b)


\sqrt{128a^(6)b^(13)} = 8 a^(3) b^(6) √(2b)

User Rossanna
by
4.3k points