183k views
1 vote
Simplify. (Assume all variables represent positive real numbers). Leave answer in radical form.


\sqrt128a^(6)b^(13)

1 Answer

3 votes

Answer:


\sqrt{128a^(6)b^(13)} = 8 a^(3) b^(6) √(2b)

Explanation:

Given


\sqrt{128a^(6)b^(13)}

Required

Solve


\sqrt{128a^(6)b^(13)}

The expression can be split to:


\sqrt{128a^(6)b^(13)} = √(128) * \sqrt{a^(6)} * \sqrt{b^(13)}


\sqrt{128a^(6)b^(13)} = √(64 * 2) * \sqrt{a^(6)} * \sqrt{b^(13)}


\sqrt{128a^(6)b^(13)} = √(64) * √(2) * \sqrt{a^(6)} * \sqrt{b^(13)}


\sqrt{128a^(6)b^(13)} = √(64) * √(2) * \sqrt{a^(6)} * \sqrt{b^(12 + 1)}


\sqrt{128a^(6)b^(13)} = √(64) * √(2) * \sqrt{a^(6)} * \sqrt{b^(12)} * √(b)

So, we have:


\sqrt{128a^(6)b^(13)} = 8 * √(2) * a^(6/2) * b^(12/2) * √(b)


\sqrt{128a^(6)b^(13)} = 8 * √(2) * a^(3) * b^(6) * √(b)

Rewrite as:


\sqrt{128a^(6)b^(13)} = 8 * a^(3) * b^(6)* √(2) * √(b)


\sqrt{128a^(6)b^(13)} = 8 a^(3) b^(6)* √(2b)


\sqrt{128a^(6)b^(13)} = 8 a^(3) b^(6) √(2b)

User Rossanna
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories