77.1k views
0 votes
Find <ABC. Please help.​

Find <ABC. Please help.​-example-1
User Kitcc
by
5.7k points

1 Answer

5 votes

Answer:


\angle\ ABC=70

Explanation:


We\ are\ given\ that,\\AB\ and\ AC\ are\ two\ equal\ chords\ on\ the\ circle\ ABC.\\ Let\ the\ center\ of\ the\ circle\ ABC\ be\ O.\\ Angle\ subtended\ at\ the\ Center\ of\ the\ circle\ by\ Chord\ AB\ is\ 110.\\Hence,\\Lets\ connect\ AC\ to\ form\ a\ triangle- \triangle ABC.\\Also,\\O\ forms\ the\ Centroid\ of\ \triangle ABC.


By\ joining\ sides\ AO\ and\ OB,\ we\ obtain\ \triangle ABO.\\Hence,\\\angle BOA=110\ \\Now,\\Considering\ point\ C\ on\ Circle\ ABC,\ lets\ consider\ \angle BCA.


We\ know\ that,\\'Angle\ subtended\ by\ a\ chord\ at\ the\ center\ is\ double\ the\ angle\\ subtended\ by\ the\ same\ chord\ at\ the\ respective\ arc\ of\ the\ circle'.\\Here,\\As\ BOA\ is\ an\ angle\ subtended\ by\ the\ chord\ AB\ at\ the\ center\ of\ circle\ ABC\\ while,\ BCA\ is\ an\ angle\ subtended\ by\ the\ same\ chord\ AB\ at\ the\ major\ arc\ of\\ the\ Circle\ ABC.


Here,\\\angle BOA=2 \angle BCA\\Hence,\\Substituting\ \angle BOA=110,\\110=2*\angle BCA\\Hence,\\\angle BCA=(110)/(2)=55


Now,\\We\ also\ know\ that,\\'Base\ angles\ opposite\ to\ equal\ sides\ are\ equal\ too'.\\Here,\\In\ \triangle ABC,\\As\ BA=BC,\\\angle BAC= \angle BCA\\\\\therefore \angle BAC= \angle BCA=55


The\ Angle\ Sum\ Property\ of\ a\ Triangle\ States\ that,\\'The\ Sum\ of\ all\ Interior\ Angles\ of\ a\ Triangle\ is\ 180.'\\Hence,\\As\ Polygon\ ABC\ is\ a\ triangle,\\\angle BCA +\angle BAC +\angle ABC=180\\Substituting\ \angle BCA=\angle BAC=55,\\55+55+ \angle ABC=180\\Hence,\\110+ \angle ABC=180\\Or,\\\angle ABC=180-110=70

Find <ABC. Please help.​-example-1
User Kieran E
by
6.2k points