233k views
0 votes
A rectangular goat pen has an area of 32 square meters and a perimeter of 24 meters. What are the dimensions of the pen?

User Hooman
by
8.6k points

1 Answer

3 votes

Answer:

Breadth is 4 m and length is 8m

Explanation:

Area of the rectangle = Length * breadth

Area of the rectangular goat pen= 32 square meters

Perimeter of the rectangular goat pen = 24 meters

Perimeter of the rectangle = 2(length + breadth)

24= 2(l+b)

12= length + breadth

12- breadth = length ----------- equation A

Area = l*b

32= l*b

32= (12- b) *b

32= 12b- b²

b²-12b+32= 0------------------- equation B

Solving the quadratic equation by factorization

b²- 8b- 4b+32= 0

b(b-8) -4(b-8)= 0

(b-8) = 0

(b-4)= 0

b= 8 or b=4

As breadth is usually smaller than length then putting b= 4 in equation A

gives

12- breadth = length

12-4= length

length = 8

Hence breadth is 4 m and length is 8m

User Josh Tilles
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.