Step-by-step explanation:
First, we need to find the values of the sine and cosine of x knowing the value of tan x and x being in the 3rd quadrant. Since tan x = 5/12, using Pythagorean theorem, we know that
![\sin x = -(5)/(13)\;\;\text{and}\;\;\cos x = -(12)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/b6arzf6ii421qwvcbad446ce77nrgvxnsh.png)
Note that both sine and cosine are negative because x is in the 3rd quadrant.
Recall the addition identities listed below:
![\sin(\alpha + \beta) = \sin\alpha\sin\beta + \cos\alpha\cos\beta](https://img.qammunity.org/2023/formulas/mathematics/college/3tlpxkw0mvzvrfdz3leybr1dz4baacww3r.png)
![\Rightarrow \sin(180+x) = \sin180\sin x + \cos180\cos x](https://img.qammunity.org/2023/formulas/mathematics/college/mcnc0g909s4qvcyzwcp67kisvmg1rljxyk.png)
![\;\;\;\;\;\;= -\sin x = (5)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/wyk3ch5s6kidlxwuacwtq614ja2xrotl8c.png)
![\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta](https://img.qammunity.org/2023/formulas/mathematics/college/tayc9jggkbj25ukzjum2gb284h4ixkn99v.png)
![\Rightarrow \cos(180 - x) = \cos180\cos x + \sin180\sin x](https://img.qammunity.org/2023/formulas/mathematics/college/jay4tcwld3nrxgl3qxval2w4uwan796e70.png)
![\;\;\;\;\;\;=-\cos x = (12)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/o2bg4wnvzwd2rl2trl6g3pdhdujt24dwmc.png)
![\tan(\alpha - \beta) = (\tan\alpha - \tan\beta)/(1 + \tan\alpha\tan\beta)](https://img.qammunity.org/2023/formulas/mathematics/college/acc22c2lsssb6cj6ygwi2yz986hv7avfcx.png)
![\Rightarrow \tan(360 - x) = (\tan 360 - \tan x)/(1 + \tan 360 \tan x)](https://img.qammunity.org/2023/formulas/mathematics/college/i34f23rnmq4pjeic0z84crdc0e77g9cf19.png)
![\;\;\;\;\;\;= -\tan x = -(5)/(12)](https://img.qammunity.org/2023/formulas/mathematics/college/h8oipbc4fmy9iqqn0q3c4b0zgv94fc11vu.png)
Therefore, the expression reduces to
![\sin(180+x) + \tan(360-x) + (1)/(\cos(180-x))](https://img.qammunity.org/2023/formulas/mathematics/college/14of6cahuz2khcns6v5sipl02tzl92xihx.png)
![\;\;\;\;\;= \left((5)/(13)\right) + \left((5)/(12)\right) + (1)/(\left((12)/(13)\right))](https://img.qammunity.org/2023/formulas/mathematics/college/naf5a79ec7b3sa161a7aqsinod48aiy3a8.png)
![\;\;\;\;\;= (49)/(26)](https://img.qammunity.org/2023/formulas/mathematics/college/msi8zqy7q35ad120l8hi9ag9njp8lh17ee.png)