162k views
3 votes
Which graph shows all the values that satisfy 2/gx +3>45/g

User Djunehor
by
7.6k points

2 Answers

5 votes

Answer:

it's the 1st graph

Explanation:

User Alan Porter
by
8.7k points
5 votes

Answer:

In graphing inequalities, the first thing to do is graph the equation first irregardless of the inequality symbol. In the given problem, the equation to be graphed is f(x) = 2/9x + 3. Since it has a general form of y=mx + b, this is a linear function. Plot the graph by assigning arbitrary points of x, then you get the corresponding f(x) values. Graph the x values against the f(x) values. The blue line the attached picture will be formed.

Next, you solve the equation by finding x. Just don't mind the inequality symbol:

2/9 x + 3 > 4 5/9

2/9x > 4 5/9 - 3

2/9x > 14/9

x > 14/9 ÷ 2/9

x > 7

Hence, the value of x must be greater than 7. To show this in the graph, find the line where x=7. Create a partition using that line, then shade the rest of the portion where x is greater than 7 until infinity.

Explanation:

User Murphytalk
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories