63.4k views
4 votes
Help please!!

simplify the following:

\displaystyle \lim_(n\to \infty ) \frac{1 + 2 + 3 + \dots {\dots} +n }{ {n}^(2) }

\text{ note: must provide explanation}


2 Answers

6 votes

Answer:


(1)/(2)

Explanation:

we are given a limit

and we want to simplify it

notice that, the numerator is in a sequence of sum of natural number

recall that,


\rm \displaystyle \: 1 + 2 + 3 + \dots {\dots }+ n = (n(n + 1))/(2)

so substitute:


\displaystyle \lim_(n\to \infty ) \frac{ (n(n + 1))/(2) }{ {n}^(2) }

now recall L'Hôpital's rule


\displaystyle \lim_(x \to c) (f(x))/(g(x)) = \lim_(x \to c) (f'(x))/(g'(x))

first simplify the complex fraction:


\displaystyle \lim_(n\to \infty ) (n+ 1)/(2n)

apply L'Hôpital's rule:


\displaystyle \lim_( n\to \infty ) ( (d)/(dn) n+ 1)/( (d)/(dn) 2n)

simplify:


(1)/(2)

and we are done:

User Gilles Gregoire
by
4.0k points
0 votes

Explanation:

solution given:

The given expression takes a form
( \infty )/( \infty )

when n=
\infty

so,


\displaystyle \lim_(n\to \infty ) \frac{1 + 2 + 3 + \dots {\dots} +n }{ {n}^(2) }


\displaystyle \lim_(n\to \infty )\frac{n(n+1)}{ 2{n}^(2) }


\displaystyle \lim_(n\to \infty )(n+1)/( 2n)


(1)/(2)


\displaystyle \lim_(n\to \infty )[1+(1)/( n)]

=
(1)/(2)(1+
(1)/( \infty ))

=
(1)/(2) is your answer

User Bo Frese
by
3.4k points