Answer:
![Domain: [0,17]](https://img.qammunity.org/2022/formulas/mathematics/college/6a600hcsd8jxyfmpneoyilsuw1tfg87l86.png)
![Range:[0,544]](https://img.qammunity.org/2022/formulas/mathematics/college/y2vzkbzjee7cno1ay2t07q3j8ujd60meg5.png)
Explanation:
Given
![d(x) = 32x](https://img.qammunity.org/2022/formulas/mathematics/college/p1jx4wf6aj516txfrjrgnr7bq3ypge4hf2.png)
Maximum gallon = 17
Required
Determine the domain and range --- This completes the question
If the maximum is 17 (i.e. at full capacity) then the minimum is 0 (i.e. when empty)
So, the domain is:
![Domain: [0,17]](https://img.qammunity.org/2022/formulas/mathematics/college/6a600hcsd8jxyfmpneoyilsuw1tfg87l86.png)
To calculate the range, substitute 0 and 17 for x in
![d(x) = 32x](https://img.qammunity.org/2022/formulas/mathematics/college/p1jx4wf6aj516txfrjrgnr7bq3ypge4hf2.png)
![d(0) = 32 * 0 = 0](https://img.qammunity.org/2022/formulas/mathematics/college/usg22812gbp6aezut4q3jzutq2x810xka0.png)
![d(17) = 32 * 17 = 544](https://img.qammunity.org/2022/formulas/mathematics/college/dg7rfkkaqcwgc4qswf2k0bpthmas1gor4j.png)
So, the range is:
![Range:[0,544]](https://img.qammunity.org/2022/formulas/mathematics/college/y2vzkbzjee7cno1ay2t07q3j8ujd60meg5.png)