Answer:
(b)
Explanation:
Given
A roll of a six sided die
Required
Which of the options is true
A) P(Even) = 1/4 and P(Odd) = 3/4
In a die, we have:
-- sample space
--- Even
-- Odd
The probability of even is the number of even sides over total.
i.e.
![P(Even) = 3/6](https://img.qammunity.org/2022/formulas/mathematics/college/w5s8f6tf6r4ktk9oc31nhpjh9zbcenqoux.png)
![P(Odd) = 3/6](https://img.qammunity.org/2022/formulas/mathematics/college/8bwgbmle2wtrdtb7a0k8t4lfdvemszqn7d.png)
Hence, (a) is incorrect
(b) A) P(Even) = 1/2 and P(Odd) = 3/2
In (a), we have:
![P(Even) = 3/6](https://img.qammunity.org/2022/formulas/mathematics/college/w5s8f6tf6r4ktk9oc31nhpjh9zbcenqoux.png)
![P(Odd) = 3/6](https://img.qammunity.org/2022/formulas/mathematics/college/8bwgbmle2wtrdtb7a0k8t4lfdvemszqn7d.png)
Simplify each
![P(Even) = 1/2](https://img.qammunity.org/2022/formulas/mathematics/college/c6gd9y08am3fq7cid1p2hqh5bjooyv0pll.png)
![P(Odd) = 1/2](https://img.qammunity.org/2022/formulas/mathematics/college/lv33t37xzdta543slixh909w55tfl862sn.png)
Hence (b) is true
Since (b) is true, (c) and (d) are false