Answer:
(a) 6.283 Wb (b) 69.11 Wb (c) I = 0.628 A
Step-by-step explanation:
Given that,
The diameter of the loop, d = 40 cm
Radius, r = 20 cm
Initial magnetic field, B = 5 mT
Final magnetic field, B' = 55 mT
Initial magnetic flux,
![\phi_i=BA\\\\=5* 10^(-3)* \pi * 20^2\\\\=6.283\ Wb](https://img.qammunity.org/2022/formulas/physics/college/lexoburftld7sn8znbko2gfyfzbouv55o8.png)
Final magnetic flux,
![\phi_f=B'A\\\\=55* 10^(-3)* \pi * 20^2\\\\=69.11\ Wb](https://img.qammunity.org/2022/formulas/physics/college/gu9wtshd63hf0tfvosxe0ccb5l0ycc1j0c.png)
Due to change in magnetic field an emf will be generated in the loop. It is given by :
![\epsilon=-(d\phi)/(dt)\\\\=\phi_f-\phi_i\\\\=69.11-6.283\\\\=62.827\ V](https://img.qammunity.org/2022/formulas/physics/college/h7s1878a6w9ynjpvm2t0xoncd548rzibc6.png)
Let I be the current in the loop. We can find it using Ohm's law such that,
![\epsilon=IR\\\\I=(\epsilon)/(R)\\\\I=(62.827)/(100)\\\\=0.628\ A](https://img.qammunity.org/2022/formulas/physics/college/9yzq04er42wfjktpagf1zdvqmylnggelhs.png)
Hence, this is the required solution.