87.7k views
1 vote
Find the average value of a function

Find the average value of a function-example-1

1 Answer

1 vote

Answer:

The average value of g is:


\displaystyle g_(ave)=(1)/(6)e^6-(49)/(6)\approx 59.071

Explanation:

The average value of a function is given by the formula:


\displaystyle f_(ave)=(1)/(b-a)\int_a^b f(x)\, dx

We want to find the average value of the function:


g(x)=e^(3x-3)-4x

On the interval [1, 3].

So, the average value will be given by:


g_(ave)=\displaystyle (1)/(3-1)\int_1^3 e^(3x-3)-4x\, dx

Simplify. We will also split the integral:


\displaystyle g_(ave)=(1)/(2)\left(\int_1^3e^(3x-3)\, dx-\int _1^3 4x\, dx\right)

We can use u-substitution for the first integral. Letting u = 3x - 3, we acquire:


\displaystyle u=3x-3\Rightarrow du = 3\, dx\Rightarrow (1)/(3) du=dx

We will also change the limits of integration for our first integral. So:


u(1)=3(1)-3=0\text{ and } u(3)=3(3)-3=6

Thus:


\displaystyle g_(ave)=(1)/(2)\left((1)/(3)\int_0^6 e^(u)\, du-\int _1^3 4x\, dx\right)

Integrate:


g_(ave)=\displaystyle (1)/(2)\left((1)/(3)e^u\Big|_0^6-2x^2\Big|_1^3\right)

Evaluate. So, the average value of g on the interval [1, 3] is:


\displaystyle g_(ave)=(1)/(2)\left((1)/(3)\left[e^6-e^0\right]-\left[2(3)^2-2(1)^2\right]\right)

Evaluate:


\displaystyle\begin{aligned} g_(ave)&=(1)/(2)\left((1)/(3)(e^6-1)-16\right)\\&=(1)/(2)\left((1)/(3)e^6-(1)/(3)-16\right)\\&=(1)/(6)e^6-(49)/(6)\approx59.071\end{aligned}

User Eolith
by
6.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories