Answer:
![x\leq 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/22c46oumcwy0bajx0x2l18q82miau3ir2f.png)
Alternative forms:
![x\in\left(-\infty,\left.\ 1\right]\right.](https://img.qammunity.org/2023/formulas/mathematics/high-school/23mv1sa989ma83ualr2sz45v98rzbz7g47.png)
Explanation:
![-3(x+1)\geq -6](https://img.qammunity.org/2023/formulas/mathematics/high-school/c3m13xh9k9ksndqbx96ify017ilxggos49.png)
Apply the Distributive Property
![-3x-3\geq -6](https://img.qammunity.org/2023/formulas/mathematics/high-school/m34uyu34ix0dhxy2ftbpixxnlm8qd4cfrs.png)
Rearrange variables to the left side of the equation
![-3x\geq -6+3](https://img.qammunity.org/2023/formulas/mathematics/high-school/pdwhqwj0otvptl1297kylg3rb98jit9wzo.png)
Calculate the sum or difference
![-3x\geq -3](https://img.qammunity.org/2023/formulas/mathematics/high-school/saqb7w1lmw9aj5c09xcnohs9zq5nl3qu96.png)
Divide both sides of the inequality by the coefficient of variable
![x\leq (-3)/(-3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/phpirv2yxq1znne9wezd2c3in9tzkrymv8.png)
Determine the sign for multiplication or division
![x\leq (3)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/e5o84lnguhvv64dkehnhhvky88t3tywte0.png)
Cross out the common factor
I hope this helps you
:)