82.5k views
0 votes
Helppp me plsssssssss



Helppp me plsssssssss ​-example-1
User Mikong
by
5.7k points

1 Answer

4 votes

Answer:

The class 35 - 40 has maximum frequency. So, it is the modal class.

From the given data,


  • \sf \:\:\:\:\:\:\:\:\:\:x_(k)=35

  • \sf \:\:\:\:\:\:\:\:\:\:f_(k)=50

  • \sf \:\:\:\:\:\:\:\:\:\:f_(k-1)=34

  • \sf \:\:\:\:\:\:\:\:\:\:f_(k+1)=42

  • \sf \:\:\:\:\:\:\:\:\:\:h=5


{\bf \:\: {By\:using\:the\: formula}} \\ \\


\:\dag\:{\small{\underline{\boxed{\sf {Mode,\:M_(o) =\sf\red{x_k + {\bigg(h * \: ( ( f_k - f_(k-1)))/( (2f_k - f_(k - 1) - f_(k +1)))\bigg)}}}}}}} \\ \\


\sf \:\:\:\:\:\:\:\:\:= 35+ {\bigg(5 * ((50 - 34))/( ( 2 * 50 - 34 - 42))\bigg)} \\ \\


\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:= 35 +{\bigg(5 * (16)/(24)\bigg)} \\ \\


\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:= {\bigg(35+(10)/(3)\bigg)} \\ \\


\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:(35 + 3.33) =.38.33 \\ \\


\:\:\sf {Hence,}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\ \large{\underline{\mathcal{\gray{ mode\:=\:38.33}}}} \\ \\


{\large{\frak{\pmb{\underline{Additional\: information }}}}}

MODE

  • Most precisely, mode is that value of the variable at which the concentration of the data is maximum.

MODAL CLASS

  • In a frequency distribution the class having maximum frequency is called the modal class.


{\bf{\underline{Formula\:for\: calculating\:mode:}}} \\


{\underline{\boxed{\sf {Mode,\:M_(o) =\sf\red{x_k + {\bigg(h * \: ( ( f_k - f_(k-1)))/( (2f_k - f_(k - 1) - f_(k +1)))\bigg)}}}}}} \\ \\

Where,


\sf \small\pink{ \bigstar} \: x_(k)= lower\:limit\:of\:the\:modal\:class\:interval.


\small \blue{ \bigstar}
\sf \: f_(k)=frequency\:of\:the\:modal\:class


\sf \small\orange{ \bigstar}\: f_(k-1)=frequency\:of\:the\:class\: preceding\:the\;modal\:class


\sf \small\green{ \bigstar}\: f_(k+1)=frequency\:of\:the\:class\: succeeding\:the\;modal\:class


\small \purple{ \bigstar}
\sf \: h= width \:of\:the\:class\:interval

User Gal Dreiman
by
5.5k points