106k views
2 votes
Find the area of the complex figure.

Find the area of the complex figure.-example-1
User Shragi
by
7.8k points

1 Answer

7 votes

Answer:

1863 m^2

Explanation:

In mathematics, area is the amount of space enclosed by a two-dimensional figure. It is measured in square units, such as square centimeters, square meters, or square feet.

The area of a shape can be calculated using a variety of formulas, depending on the shape of the figure.

In this case:

We can divide the given complex figure in three rectangles named as A , B and C:
For Detail See Attachment:

Since, Area of rectangle = Length * Breadth

We can use this formula to calculate Three rectangle's area:

Now,

Area of Rectangle A = Length* breadth

= AB* AH

= 31 * (69-(23+23))

= 31 * 23

= 713 m^2

Area of Rectangle B = Length* breadth

= GF * FJ

= 23*(31-12)

=23 * 19

= 437 m^2

Area of Rectangle C = Length* breadth

= ED * CD

= 23*31

= 713 m^2

Now,

Total Area = sum of Area of rectangle A, B and C

Total Area = 713+437+713 =1863 m^2

Therefore, the area of the complex figure is 1863 m^2

Find the area of the complex figure.-example-1
User Dmitry Yantsen
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories