90.1k views
5 votes
Help!!
differentiate

{ {e}^(x) }^(2) log_(10)(2x)


User Rufo
by
4.5k points

1 Answer

6 votes

Rewrite the function using the change-of-base identity as


e^(x^2) \log_(10)(2x) = e^(x^2) (\ln(2x))/(\ln(10))

Apply the product rule:


\left(e^(x^2) \log_(10)(2x)\right)' = \left(e^(x^2)\right)' (\ln(2x))/(\ln(10)) + e^(x^2) \left((\ln(2x))/(\ln(10))\right)'

Use the chain rule:


\left(e^(x^2) \log_(10)(2x)\right)' = e^(x^2)\left(x^2\right)' (\ln(2x))/(\ln(10)) + e^(x^2) ((2x)')/(2\ln(10)x)

Compute the remaining derivatives:


\left(e^(x^2) \log_(10)(2x)\right)' = 2xe^(x^2) (\ln(2x))/(\ln(10)) + e^(x^2) \frac2{2\ln(10)x} = e^(x^2)\left((2x\ln(2x))/(\ln(10)) + \frac1{\ln(10)x}\right)

If you like, you can convert back to base-10 logarithms:

ln(2x) / ln(10) = log₁₀(2x)

1 / ln(10) = ln(e) / ln(10) = log₁₀(e)

Then


\left(e^(x^2) \log_(10)(2x)\right)' = e^(x^2)\left(2x\log_(10)(2x)+\frac{\log_(10)(e)}x\right)

User Mayank Pandya
by
4.6k points