Answer:
Explanation:
Suppose that f(2) = −4, g(2) = 3, f '(2) = −5, and g'(2) = 1.
Find h'(2).
(a) h(x) = 4f(x) − 5g(x)
Use the constant multiple and difference rules:
h'(x) = 4f '(x) − 5g'(x)
h'(2) = 4*f'(2) − 5*g'(2), now substitute values and solve
h'(2) = 4*(−5) − 5*1 = −20 − 5 = −25