133k views
5 votes
Can I get help with this

Can I get help with this-example-1
Can I get help with this-example-1
Can I get help with this-example-2

1 Answer

3 votes

Answer:

The correct option is;

B) -6

Explanation:

The given parameters are;

The line of symmetry of f(x) = The line of the reflection of g(x) over the y-axis

f(x) = 3·x² + b·x + c

From the given graph of g(x), we have;

The vertex point of g(x) = (-1, 8)

The line of symmetry is the line x = -1

The image of the reflection of (x, y) over the y-axis is (-x, y)

The image of the vertex of g(x) following a reflection across the y-axis is (1, 8)

Therefore;

The line of symmetry of the image of g(x) following a reflection over the x-axis is the line x = 1

The line (axis) of symmetry of a quadratic function is the line x = -b/(2·a), which is a line that always go through the vertex of the parabola

Where;

a = The coefficient of x²

b = The coefficient of 'x'

For f(x) = 3·x² + b·x + c, a = 3, and b = b

Given that f(x) and the image of g(x) have the same line of symmetry, we have;

The line of symmetry of f(x) is x = 1

Therefore, from the formula for the line of symmetry, we have;

x = -b/(2·a)

x = 1

By substitution, we have;

1 = -b/(2·a)

∴ -2·a = b

Given that a = 3, we get;

-2 × 3 = -6 = b

b = -6

User Abderrahim Kitouni
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories