Answer:
The mass of the radioactive sample after 40 minutes is 12.8 g.
Explanation:
The mass of the sample can be found by using the exponential decay equation:

Where:
N(t): is the amount of the sample at time t =?
N₀: is the initial quantity of the sample = 120 g
t = 40 min
λ: is the decay constant = 0.056 min⁻¹
Hence, the mass of the sample after 40 min is:

Therefore, the mass of the radioactive sample after 40 minutes is 12.8 g.
I hope it helps you!