The 99% confidence interval for the true mean number of mosquitoes caught per trap is approximately:
![\[ (757.0667, 842.9333) \]](https://img.qammunity.org/2022/formulas/mathematics/high-school/b2bmthqrksq8uhdrf3pbt2l63tak8kudc3.png)
To calculate the 99% confidence interval for the true mean of the number of mosquitoes caught per trap, we can use the formula for the confidence interval:
![\[ \text{Confidence Interval} = \text{Mean} \pm \left( \text{Critical Value} * \frac{\text{Standard Deviation}}{\sqrt{\text{Sample Size}}} \right) \]](https://img.qammunity.org/2022/formulas/mathematics/high-school/13xwap3k8d6e906gxn7po5kxrr2qcj52mo.png)
The critical value depends on the desired confidence level and the distribution of the data. For a normal distribution, the critical value for a 99% confidence level is approximately 2.576.
Given:
- Mean (\(\bar{X}\)) = 800 mosquitoes per trap,
- Standard Deviation (\(S\)) = 100 mosquitoes,
- Sample Size (\(n\)) = 36,
- Critical Value (\(Z\)) for 99% confidence level ≈ 2.576.
Substitute these values into the formula:
![\[ \text{Confidence Interval} = 800 \pm \left( 2.576 * (100)/(√(36)) \right) \]](https://img.qammunity.org/2022/formulas/mathematics/high-school/sx58yi3hy6fkzrn3c2d04ow814vh5tfdx7.png)
![\[ \text{Confidence Interval} = 800 \pm \left( 2.576 * (100)/(6) \right) \]](https://img.qammunity.org/2022/formulas/mathematics/high-school/6kofb2fquirkzegbvr9dazqz6k4crhp100.png)
![\[ \text{Confidence Interval} = 800 \pm 42.9333 \]](https://img.qammunity.org/2022/formulas/mathematics/high-school/gnic4epjjk5ymj6uaw2704cuxj6ngm3v73.png)
Now, calculate the upper and lower bounds of the confidence interval:
![\[ \text{Lower Bound} = 800 - 42.9333 \]](https://img.qammunity.org/2022/formulas/mathematics/high-school/vn1oiqlfbcyjzy0kvo5awwpa51jx17g264.png)
![\[ \text{Upper Bound} = 800 + 42.9333 \]](https://img.qammunity.org/2022/formulas/mathematics/high-school/nd6sdvvkht2otb2b9sl3sla26kg2kgnn1k.png)
Therefore, the 99% confidence interval for the true mean number of mosquitoes caught per trap is approximately:
![\[ (757.0667, 842.9333) \]](https://img.qammunity.org/2022/formulas/mathematics/high-school/b2bmthqrksq8uhdrf3pbt2l63tak8kudc3.png)