156k views
0 votes
Find the values of the sine, cosine, and tangent for ZA.

(TOP OF TRIANGLE IS (A))

Find the values of the sine, cosine, and tangent for ZA. (TOP OF TRIANGLE IS (A))-example-1

1 Answer

2 votes


\bigstar\:{\underline{\sf{In\:right\:angled\:triangle\:ABC\::}}}\\\\

  • AC = 7 m
  • BC = 4 m

⠀⠀⠀


\bf{\dag}\:{\underline{\frak{By\:using\:Pythagoras\: Theorem,}}}\\\\


\star\:{\underline{\boxed{\frak{\purple{(Hypotenus)^2 = (Perpendicular)^2 + (Base)^2}}}}}\\\\\\ :\implies\sf (AB)^2 = (AC)^2 + (BC)^2\\\\\\ :\implies\sf (AB)^2 = (AB)^2 = (7)^2 = (4)^2\\\\\\ :\implies\sf (AB)^2 = 49 + 16\\\\\\ :\implies\sf (AB)^2 = 65\\\\\\ :\implies{\underline{\boxed{\pmb{\frak{AB = √(65)}}}}}\:\bigstar\\\\

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

☆ Now Let's find value of sin A, cos A and tan A,

⠀⠀⠀

  • sin A = Perpendicular/Hypotenus =
    \sf (4)/(√(65)) * (√(65))/(√(65)) = \pink{(4 √(65))/(65)}

⠀⠀⠀

  • cos A = Base/Hypotenus =
    \sf (7)/(√(65)) * (√(65))/(√(65)) = \pink{(7 √(65))/(65)}

⠀⠀⠀

  • tan A = Perpendicular/Base =
    {\sf{\pink{(4)/(7)}}}

⠀⠀⠀


\therefore\:{\underline{\sf{Hence,\: {\pmb{Option\:A)}}\:{\sf{is\:correct}}.}}}

Find the values of the sine, cosine, and tangent for ZA. (TOP OF TRIANGLE IS (A))-example-1
User Farahmand
by
4.8k points