171k views
5 votes
Find the slope between the given two points​

Find the slope between the given two points​-example-1
User VDWWD
by
6.1k points

1 Answer

5 votes

Slope can be found using the following equation:

slope (m) =
(y_2 - y_1)/(x_2 - x_1)

7) Let:


(x_1 , y_1) = (-1 , -11)\\(x_2 , y_2) = (-6 , -7)

Plug in the corresponding numbers to the corresponding variables:

m =
(-7 - (-11))/(-6 - (-1)) = (-7 + 11)/(-6 + 1) = (4)/(-5) = -(4)/(5)

Slope:
-(4)/(5)

8) Let:


(x_1 , y_1) = (-7 , -13)\\(x_2 , y_2) = (1 , -5)

Plug in the corresponding numbers to the corresponding variables:

m =
(-5 - (-13))/(1 - (-7)) = (-5 + 13)/(1 + 7) = (8)/(8) = 1

Slope:
1

9) Let:


(x_1 , y_1) = (-5 , 3)\\(x_2 , y_2) = (8 , 3)

Plug in the corresponding numbers to the corresponding variables:

m =
(3 - (3))/(8 - (-5)) = (0)/(8 + 5) = (0)/(13) = 0

Slope:
0

10) Let:


(x_1 , y_1) = (3 , -2)\\(x_2 , y_2) = (15 , 7)

Plug in the corresponding numbers to the corresponding variables:

m =
(7 - (-2))/(15 - 3) = (7 + 2)/(15 - 3) = (9)/(12)

Simplify the slope. Divide common factors from both the numerator and denominator:


((9)/(12))/((3)/(3) ) = (3)/(4)

Slope:
(3)/(4)

11) Let:


(x_1 , y_1) = (-5 , -10)\\(x_2 , y_2) = (-5 , -1)

Plug in the corresponding numbers to the corresponding variables:

m =
(-1 - (-10))/(-5 - (-5)) = (-1 + 10)/(-5 + 5) = (9)/(0) = undefined.

Slope: undefined

12) Let:


(x_1 , y_1) = (-4 , -2)\\(x_2 , y_2) = (-12, 16)

Plug in the corresponding numbers to the corresponding variables:

m =
(16 - (-2))/(-12 - (-4)) = (16 + 2)/(-12 + 4) = (18)/(-8) = -(18)/(8) = ((-(18)/(8))/( (2)/(2)) = -(9)/(4)

Slope:
-(9)/(4)

~

User Fred Novack
by
5.8k points