Answer:
The answer is 30+7i.
Explanation:
Imaginary Number Definition
![\large\boxed{{i=√(-1)}}](https://img.qammunity.org/2022/formulas/mathematics/college/mdj9enepqkuipw4e1lvdpawrpvpapt781d.png)
Simply evaluate like how you evaluate polynomials. Expand the expression in.
![\large{(8-3i)(3+2i)=[(8*3)+(8*2i)]+[(-3i*3)+(-3i*2i)]}\\\large{(8-3i)(3+2i)=(24+16i)+(-9i-6i^2)](https://img.qammunity.org/2022/formulas/mathematics/college/7ci7lfp2zjtcsl13jfcwfrbwh2i86vc3q2.png)
Therefore, our new expression when cancelling out the brackets is:
![\large\boxed{24+16i-9i-6i^2}](https://img.qammunity.org/2022/formulas/mathematics/college/ijiqsvuh8s7mruege62xi4edphddyatf2o.png)
Imaginary Number Definition II
![\large\boxed{i^2=-1}](https://img.qammunity.org/2022/formulas/mathematics/college/a0jo5flotcvrxwhckotuojs7z37dbtbr4q.png)
Therefore, substitute or change i² to -1
![\large{24+16i-9i-6(-1)}\\\large{24+7i+6}\\\large{30+7i}](https://img.qammunity.org/2022/formulas/mathematics/college/v589u6u7s5ylz2yh4idlhjly73eya54x7p.png)
Complex Number Definition
![\large\boxed{a+bi}](https://img.qammunity.org/2022/formulas/mathematics/college/8oy3u5xmhluv7ymb0fkici2khugcjr6z79.png)
Where a = Real Part and bi = Imaginary Part.
Therefore, it's the best to arrange in the form of a+bi.
Hence, the answer is 30+7i.