131k views
2 votes
Calculus helpppppppppppppppp

Calculus helpppppppppppppppp-example-1
User Bolhoso
by
9.0k points

1 Answer

1 vote

Answer:


\displaystyle y' = \frac{5x^2 + 3}{3(1 + x^2)^\bigg{(2)/(3)}}

General Formulas and Concepts:

Pre-Algebra

  • Equality Properties

Algebra I

  • Functions
  • Function Notation
  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Algebra II

  • Logarithms and Natural Logs
  • Logarithmic Property [Multiplying]:
    \displaystyle log(ab) = log(a) + log(b)
  • Logarithmic Property [Exponential]:
    \displaystyle log(a^b) = b \cdot log(a)

Calculus

Derivatives

Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Logarithmic Derivative:
\displaystyle (d)/(dx) [lnu] = (u')/(u)

Implicit Differentiation

Explanation:

Step 1: Define

Identify


\displaystyle y = x\sqrt[3]{1 + x^2}

Step 2: Rewrite

  1. [Equality Property] ln both sides:
    \displaystyle lny = ln(x\sqrt[3]{1 + x^2})
  2. Logarithmic Property [Multiplying]:
    \displaystyle lny = ln(x) + ln(\sqrt[3]{1 + x^2})
  3. Exponential Rule [Root Rewrite]:
    \displaystyle lny = ln(x) + ln \bigg[ (1 + x^2)^\bigg{(1)/(3)} \bigg]
  4. Logarithmic Property [Exponential]:
    \displaystyle lny = ln(x) + (1)/(3)ln(1 + x^2)

Step 3: Differentiate

  1. ln Derivative [Implicit Differentiation]:
    \displaystyle (d)/(dx)[lny] = (d)/(dx) \bigg[ ln(x) + (1)/(3)ln(1 + x^2) \bigg]
  2. Rewrite [Derivative Property - Addition]:
    \displaystyle (d)/(dx)[lny] = (d)/(dx)[ln(x)] + (d)/(dx) \bigg[ (1)/(3)ln(1 + x^2) \bigg]
  3. Rewrite [Derivative Property - Multiplied Constant]:
    \displaystyle (d)/(dx)[lny] = (d)/(dx)[ln(x)] + (1)/(3)(d)/(dx)[ln(1 + x^2)]
  4. ln Derivative [Chain Rule]:
    \displaystyle (y')/(y) = (1)/(x) + (1)/(3) \bigg( (1)/(1 + x^2) \bigg) \cdot (d)/(dx)[(1 + x^2)]
  5. Rewrite [Derivative Property - Addition]:
    \displaystyle (y')/(y) = (1)/(x) + (1)/(3) \bigg( (1)/(1 + x^2) \bigg) \cdot \bigg( (d)/(dx)[1] + (d)/(dx)[x^2] \bigg)
  6. Basic Power Rule]:
    \displaystyle (y')/(y) = (1)/(x) + (1)/(3) \bigg( (1)/(1 + x^2) \bigg) \cdot (2x^(2 - 1))
  7. Simplify:
    \displaystyle (y')/(y) = (1)/(x) + (1)/(3) \bigg( (1)/(1 + x^2) \bigg) \cdot 2x
  8. Multiply:
    \displaystyle (y')/(y) = (1)/(x) + (2x)/(3(1 + x^2))
  9. [Multiplication Property of Equality] Isolate y':
    \displaystyle y' = y \bigg[ (1)/(x) + (2x)/(3(1 + x^2)) \bigg]
  10. Substitute in y:
    \displaystyle y' = x\sqrt[3]{1 + x^2} \bigg[ (1)/(x) + (2x)/(3(1 + x^2)) \bigg]
  11. [Brackets] Add:
    \displaystyle y' = x\sqrt[3]{1 + x^2} \bigg[ (5x^2 + 3)/(3x(1 + x^2)) \bigg]
  12. Multiply:
    \displaystyle y' = \frac{(5x^2 + 3)\sqrt[3]{1 + x^2}}{3(1 + x^2)}
  13. Simplify [Exponential Rule - Root Rewrite]:
    \displaystyle y' = \frac{5x^2 + 3}{3(1 + x^2)^\bigg{(2)/(3)}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Implicit Differentiation

Book: College Calculus 10e

User TheIrishGuy
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories