315,579 views
9 votes
9 votes
What is the solution to this inequality?

6x – 5 > -29
A:x > -4.
B: x <-4
C: x > 4
D: x < 4

User Himanshu Ahire
by
3.1k points

2 Answers

21 votes
21 votes

Answer:

A

Explanation:

6x - 5 > - 29 ( add 5 to both sides )

6x > - 24 ( divide both sides by 6 )

x > - 4 → A

User Mike Taylor
by
3.0k points
14 votes
14 votes

We are given with a inequality and we have to find the solution for it . So , let's start :


{:\implies \quad \sf 6x-5\> -29}

Adding 5 to both sides :


{:\implies \quad \sf 6x-\cancel{5}+\cancel{5}\>-29+5}


{:\implies \quad \sf 6x\> -24}

Dividing both sides by 6 ;


{:\implies \quad \sf \frac{\cancel{6}\cdot x}{\cancel{6}}\> -(24)/(6)}


{:\implies \quad \bf \therefore \quad \underline{\underline{x \> -4}}}

Hence , Option A) x > - 4 is correct :D

Note :-

Whenever dividing or multiplying an inequality by a -ve , so we have to tilt the sign too , while if we are multiplying or dividing with a +ve , so sign will remain the same , For example like if we are given with x > y , and we multiply both sides by -1 . So , it will then become - x < - y

User Mpdc
by
2.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.