Answer:
m<ADE = 59°
Explanation:
Each angle of a rectangle = 90°
Therefore:
m<ABE + m<CBE = 90°
(4x + 15)° + (13x + 7)° = 90°
Solve for x
4x + 15 + 13x + 7 = 90
17x + 22 = 90
17x = 90 - 22
17x = 68
x = 68/17
x = 4
✔️Opposite sides (AB and DC) of the rectangle are parallel, therefore:
m<ADE = m<CBE
m<ADE = (13x + 7)° (Substitution)
Plug in the value of x
m<ADE = 13(4) + 7
m<ADE = 52 + 7
m<ADE = 59°