Answer:
1. No
2. No
3. No
4. Yes
Explanation:
Binomial approximation to normal.
The binomial probability distribution has parameters n, p and q.
If
and
, you can use the normal approximation.
1. n = 24, p = 0.85, q = 0.15
![np = 24*0.85 = 20.4 > 5](https://img.qammunity.org/2022/formulas/mathematics/college/jcqbjq27gco2e2z20akvuucfka6veuybr1.png)
![nq = 24*0.15 = 3.6 < 5](https://img.qammunity.org/2022/formulas/mathematics/college/kz16gud1r48tg3s8v66iq2tvpk4hj0mkb7.png)
So no.
2. n = 15, p = 0.70, q = 0.30
![np = 15*0.7 = 10.5 > 5](https://img.qammunity.org/2022/formulas/mathematics/college/9xza8uoahnbwmub2gsk9jk399eunk5vbns.png)
![nq = 15*0.3 = 4.5 < 5](https://img.qammunity.org/2022/formulas/mathematics/college/6izmpv4i1k71f5vgyhenw28gkrfrwmp29x.png)
So no.
3. n = 18, p = 0.90, q = 0.10
![np = 18*0.9 = 16.2 > 5](https://img.qammunity.org/2022/formulas/mathematics/college/kldhgnz58ijtqyksyu6l2peyghu61qpoqf.png)
![nq = 18*0.1 = 1.8 < 5](https://img.qammunity.org/2022/formulas/mathematics/college/i3qhnqw4naigisn0zoff3q09xrente5a8v.png)
No
4. n = 20, p = 0.65, q = 0.35
![np = 20*0.65 = 13 > 5](https://img.qammunity.org/2022/formulas/mathematics/college/mmioueomrshovlwip4akux37r99baqtjjw.png)
![nq = 20*0.35 = 7 > 5](https://img.qammunity.org/2022/formulas/mathematics/college/28y57n0jn9uulmtdt3mh1x7n40muwziasr.png)
Yes