Answer:
![(a)\ (dP)/(dt) = 0.078- 0.000857t](https://img.qammunity.org/2022/formulas/mathematics/college/repydmglkzuomtp0n1e05mdjs13lhk85uv.png)
Explanation:
Given
In 2012
![P(t) = 7.02\ billion](https://img.qammunity.org/2022/formulas/mathematics/college/1bgqv6i8ad2s0uqivkcb4sytjg7tw6dtui.png)
--- Birth rate
-- Death rate from '12 to '40
Solving (a): Equation for population from 2012
In 2012, we have the addition in population to be:
![\triangle P= Birth - Death](https://img.qammunity.org/2022/formulas/mathematics/college/9vq80d06qv21a70seopl1nlfkpvaow905v.png)
![\triangle P= 134 - 56](https://img.qammunity.org/2022/formulas/mathematics/college/1kehupgqzjihqhfpzbhj1hyfenpwwyi4ja.png)
million
From 2012 to 2040, we have the death rate per year to be:
![Rate/yr = (80 - 56)/(2040 - 2012)](https://img.qammunity.org/2022/formulas/mathematics/college/mqbo7jk55qgje0bah3wd4cp8ta4zotmbid.png)
![Rate/yr = (24)/(28)](https://img.qammunity.org/2022/formulas/mathematics/college/xtgzxy4ha6eez0umdyn0e19j391m0fbiw3.png)
million/year
So, the differential equation is:
where t represents time
![(dP)/(dt) = 78 - (6)/(7) * t](https://img.qammunity.org/2022/formulas/mathematics/college/tae0b0umhpd5qwopixtdszyyucunjr6z9s.png)
![(dP)/(dt) = 78 - (6t)/(7)](https://img.qammunity.org/2022/formulas/mathematics/college/mv6cw897u47dljbcww0zseduvezecom2kg.png)
Express in millions
![(dP)/(dt) = (78)/(1000) - (6t)/(7000)](https://img.qammunity.org/2022/formulas/mathematics/college/60frssy9dceiftt0sremriv4d5snte3pgn.png)
![(dP)/(dt) = 0.078- 0.000857t](https://img.qammunity.org/2022/formulas/mathematics/college/des5c4egj0oxdwt35ifs81xe3z77ghcpwb.png)
Solving (b): The solution to the equation in (a)
![(dP)/(dt) = 0.078- 0.000857t](https://img.qammunity.org/2022/formulas/mathematics/college/des5c4egj0oxdwt35ifs81xe3z77ghcpwb.png)
Make dP the subject
![dP = (0.078- 0.000857t)dt](https://img.qammunity.org/2022/formulas/mathematics/college/aibu5yxx4iw355p05jknrqsjal58drwvx7.png)
Integrate both sides
![\int dP = \int (0.078- 0.000857t)dt](https://img.qammunity.org/2022/formulas/mathematics/college/h9zohg7tjd2pke9hactxq6n2ebmnkgzs22.png)
![P = \int (0.078- 0.000857t)dt](https://img.qammunity.org/2022/formulas/mathematics/college/xodwq7sbbs84rfd7v359ma4l5o1evu6q26.png)
This gives:
![P = 0.078t- (0.000857t^2)/(2) + c](https://img.qammunity.org/2022/formulas/mathematics/college/abwets0besrg7d3tahsk8f32ckzkwtwrkm.png)
![P = 0.078t- 0.0004285t^2 + c](https://img.qammunity.org/2022/formulas/mathematics/college/8m1cfc3bffyb4e3l7c4ztzrbly52vq3op8.png)
Solve for c.
When t = 0; P = 7.02
So, we have:
![7.02 = 0.078*0- 0.0004285*0^2 + c](https://img.qammunity.org/2022/formulas/mathematics/college/55ju8yqypkfgu20fezxui01si93ra6stax.png)
![7.02 =0-0 + c](https://img.qammunity.org/2022/formulas/mathematics/college/iwtaqhapaao9ys6s8vyjhllc84aocbw0ij.png)
![7.02 =c](https://img.qammunity.org/2022/formulas/mathematics/college/3dd6elil5hnrofnehj7mqishnqtxo7ut6k.png)
![c = 7.02](https://img.qammunity.org/2022/formulas/mathematics/college/jvi6ondz8wmleql68z4117lqx2pf2tdp5c.png)
So:
![P = 0.078t- 0.0004285t^2 + c](https://img.qammunity.org/2022/formulas/mathematics/college/8m1cfc3bffyb4e3l7c4ztzrbly52vq3op8.png)
![P = 0.078t- 0.0004285t^2 + 7.02](https://img.qammunity.org/2022/formulas/mathematics/college/omrzg640r8ylopcoj7yjrzg2cenxq7nb7l.png)
Solving (c): The population in 2050
We have:
![P = 0.078t- 0.0004285t^2 + 7.02](https://img.qammunity.org/2022/formulas/mathematics/college/omrzg640r8ylopcoj7yjrzg2cenxq7nb7l.png)
In 2050, the value of t is:
![t = 2050 - 2012](https://img.qammunity.org/2022/formulas/mathematics/college/fbdxt8lh2la9aijzexarqbr87ijp58kdlt.png)
![t = 38](https://img.qammunity.org/2022/formulas/mathematics/college/sy01uma9e6wtpmzl62mqjn5zzvg2ba6fiy.png)
So, the expression becomes
![P = 0.078*38- 0.0004285*38^2 + 7.02](https://img.qammunity.org/2022/formulas/mathematics/college/fv0oqm7vzvs8nzliwps1ng00gt8r4hf1za.png)
![P \approx 9.37\ billion](https://img.qammunity.org/2022/formulas/mathematics/college/x078mpmj3edfzekfctcygvbz13vqvxon1b.png)