188k views
0 votes
Simplify 81p6q2÷3p2q5 HELPPP​

User Jlocker
by
3.7k points

1 Answer

10 votes

Answer:


\displaystyle (81\, p^(6)\, q^(2))/(3\, p^(2) \, q^(5)) = (27\, p^(4))/(q^(3)).

Explanation:

Make use of the fact that for any
x \\e 0 and integer
n:


\displaystyle (1)/(x^(n)) = x^(-n).

For example, in this question:


\displaystyle (1)/(p^(2)) = p^(-2).


\displaystyle (1)/(q^(5)) = q^(-5).

Thus, the original expression would be equivalent to:


\begin{aligned}& (81\, p^(6)\, q^(2))/(3\, p^(2) \, q^(5)) \\ =\; & (81)/(3)\, (p^(6)\, p^(-2))\, (q^(2)\, q^(-5)) \\ =\; & 27\, (p^(6)\, p^(-2))\, (q^(2)\, q^(-5))\end{aligned}.

Also make use of the fact that for any
x \\e 0, integer
m, and integer
n:


x^(m)\, x^(n) = x^(m + n).

Thus:


\begin{aligned}& 27\, (p^(6)\, p^(-2))\, (q^(2)\, q^(-5)) \\=\; & 27\, p^(6 + (-2))\, q^(2 + (-5)) \\ =\; & 27\, p^(4)\, q^(-3) \\ =\; & (27\, p^(4))/(q^(3))\end{aligned}.

User Eightgate
by
3.6k points