54.8k views
14 votes
Stuck on a calc problem: #30 points!

Stuck on a calc problem: #30 points!-example-1

1 Answer

6 votes

Let's first write the given we have :


  • {\displaystyle \sf \int_(0)^(6)f(x)\: dx=9}


  • {\displaystyle \sf \int_(3)^(6)f(x)\: dx=5}


  • {\displaystyle \sf \int_(3)^(0)g(x)\: dx=-7}

Now , let's assume that ;


{:\implies \quad \displaystyle \sf \int f(x)\: dx=F(x)}

Now , proceeding further ;


{:\implies \quad \displaystyle \sf \int_(0)^(6)f(x)\: dx=9}


_(0)^(6)=9


{:\implies \quad \sf F(6)-F(0)=9}


{:\implies \quad \bf F(6)=F(0)+9\quad \qquad ---(i)}

Also , we are given with ;


{:\implies \quad \displaystyle \sf \int_(3)^(6)f(x)\: dx=5}


_(3)^(6)=5


{:\implies \quad \sf F(6)-F(3)=5}


{:\implies \quad \bf F(6)=F(3)+5\quad \qquad ---(ii)}

Now from (i) & (ii)


{:\implies \quad \sf F(3)+5=F(0)+9}


{:\implies \quad \sf F(3)-F(0)=9-5}


{:\implies \quad \bf F(3)-F(0)=4\quad \qquad ---(iii)}

Now , let's go to what we have to find ;


{:\implies \quad \displaystyle \sf \int_(0)^(3)\bigg\{(1)/(2)f(x)-3g(x)\bigg\}dx}

From the distributive of Integrals property we have ;


{:\implies \quad \displaystyle \sf \int_(0)^(3)(1)/(2)f(x)\: dx-\displaystyle \sf \int_(0)^(3)3g(x)\: dx}

We knows that we can take out the Constant from the Integrand , So


{:\implies \quad \displaystyle \sf (1)/(2)\int_(0)^(3)f(x)\: dx -3\int_(0)^(3)g(x)\: dx}

Now , we knows a property of definite Integrals :


  • {\boxed{\displaystyle \bf \int_(a)^(b)f(x)\: dx=-\displaystyle \bf \int_(b)^(a)f(x)\:dx}}

Using this property and expanding the definite integral of f(x) we have ;


{:\implies \quad \sf (1)/(2)\{F(3)-F(0)\}+3\displaystyle \sf \int_(3)^(0)g(x)\: dx}


{:\implies \quad \sf (1)/(2)(4)+3* 7\quad \qquad \{\because (iii)\:\: and\:\: Given\}}


{:\implies \quad \sf 2+21}


{:\implies \quad \bf 23}


{:\implies \quad \bf \therefore \quad \underline{\underline{\displaystyle \bf \int_(0)^(3)\bigg\{(1)/(2)f(x)-3g(x)\bigg\}dx=23}}}

User Eric Nord
by
4.7k points