Given:
The equation is:
![(2x+1)(x-2)=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/8mpuux4gx63i93k9lyo3agu32cn4yg4b72.png)
To find:
The values of a, b and b from the standard form.
Solution:
The standard form of a quadratic equation is:
....(i)
We have,
![(2x+1)(x-2)=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/8mpuux4gx63i93k9lyo3agu32cn4yg4b72.png)
In can be rewritten as
![2x(x)+(2x)(-2)+(1)(x)+(1)(-2)=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/zp3xuzd3690ajcu88j8fm90kj5onu4k3hb.png)
![2x^2-4x+x-2=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/gt9z0ejl0plyeus3upy2jnzylhws85f38x.png)
...(ii)
On comparing (i) and (ii), we get
![a=2,b=-3,c=-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/2w1ofoz1m78utq20du34vdij75t8s35kaa.png)
Therefore, the correct option is C.