Answer:
3x-10y=-41
Explanation:
"standard form of the line" is ax+by=c, where a, b, and c are free coefficients
first, we need to find the slope (m) of the line
that is calculated with the formula (y2-y1)/(x2-x1)
we have the points (3,5) and (-7,2)
label the points:
x1=3
y1=5
x2=-7
y2=2
substitute into the equation
m=(2-5)/(-7-3)
m=-3/-10
m=3/10
the slope is 3/10
before we put a line into standard form, we need to put it into another form first-- like slope-intercept form (y=mx+b, where m is the slope and b is the y intercept)
we already know the slope
here's our line so far:
y=3/10x+b
we need to find b; since the line will pass through the points (3,5) and (-7,2) we can use either one of them to find b
let's use (3,5) as an example. Substitute into the equation
5=3/10(3)+b
5=9/10+b
41/10=b
b is 41/10
this is the equation:
y=3/10x+41/10
now we can find the equation in standard form. Subtract 3/10x from both sides
-3/10x+y=41/10
a (the number in front of x cannot be negative OR less than one. First, let's multiply both sides by -1)
3/10x-y=-41/10
multiply both sides by 10 to clear the fraction
3x-10y=-41
^^ is the equation
hope this helps!