Solution :
Given :
Force, F = 500 N
Let
![$ \vec F = F_x\ \hat i + F_y\ \hat j$](https://img.qammunity.org/2022/formulas/physics/high-school/feli9ji4oe6cv8fvf3ze8shrk40uhjxlrm.png)
![$|\vec F|=√(F_x^2+F_y^2)$](https://img.qammunity.org/2022/formulas/physics/high-school/b18fqbp49x3emmh0ikvk77e6eh3hhdxa77.png)
∴
![$F_x=F \cos 60^\circ = 500 \ \cos 60^\circ = 250 \ N$](https://img.qammunity.org/2022/formulas/physics/high-school/flzk0n5y6ml5s5fc15cpekpzdwzgf0kdrv.png)
(since
direction is in negative y-axis)
![$F=250 \ \hat i - 433.01 \ \hat j$](https://img.qammunity.org/2022/formulas/physics/high-school/ynp80bvmuqexqqnstk25vrp1nm9mbrzase.png)
So scalar components are : 250 N and 433.01 N
vector components are :
and
![$-433.01\ \hat j$](https://img.qammunity.org/2022/formulas/physics/high-school/uz5d4xyemlua0ge9nd8y6h8hp28vdv5469.png)
1. Scalar components along :
x' axis = 500 N, since the force is in this direction.
![$F_(x')= F \ \cos \theta = 500\ \cos \theta$](https://img.qammunity.org/2022/formulas/physics/high-school/d5dknftkng62efe5uumadp1i3m1izt6lwa.png)
Here, θ = 0° , since force and axis in the same direction.
So, cos θ = cos 0° = 1
∴
![$F_(x')=500 * 1=500\ N$](https://img.qammunity.org/2022/formulas/physics/high-school/s8xaykfnt2s7pq2unwkaoz3gj1xogf9wd8.png)
![$F_(y')= F \ \sin \theta = 500\ \sin 0^\circ=500 * 0=0$](https://img.qammunity.org/2022/formulas/physics/high-school/c406ui2xymsxzyauc7e20qlt2ei8lhmqv6.png)
but here θ is 90°. So the force ad axis are perpendicular to each other.
![$F_(y')=F\ \cos 90^\circ= 500 \ \cos 90^\circ = 500 * 0=0$](https://img.qammunity.org/2022/formulas/physics/high-school/5jwfnkia1dbaw27n3343q3m7xbduirglcy.png)
∴
![$F_(x')= 500\ N \text{ and}\ F_(y')=0\ N$](https://img.qammunity.org/2022/formulas/physics/high-school/kxm3thv0obz08oow6c8aozv8xavadvrkw9.png)
2. Scalar components of F along:
x-axis :
, here θ is the angle between x-axis and F = 60°.
![$F_x=500 * \cos60^\circ=250\ N$](https://img.qammunity.org/2022/formulas/physics/high-school/3x4ytdeb92gwi7v0eiizryot7q7vfesno1.png)
y'-axis :
, here θ is the angle between y'-axis and F = 90°.
![$F_(y')=500 * \cos90^\circ=500* 0=0\ N$](https://img.qammunity.org/2022/formulas/physics/high-school/66z4x0ybayrri2nf7wb4ct2z77le37t31n.png)
∴
![$F_(x)= 250\ N \text{ and}\ F_(y')=0\ N$](https://img.qammunity.org/2022/formulas/physics/high-school/6qohjgwvvpw765wsvaxbknjy3ggw4ypb18.png)