184k views
5 votes
Integrate by parts xInx​

1 Answer

1 vote

Answer:


\displaystyle \int {x \ln x} \, dx = (x^2)/(2) \bigg( \ln(x) - (1)/(2) \bigg) + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int {x \ln x} \, dx

Step 2: Integrate Pt. 1

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = \ln x
  2. [u] Logarithmic Differentiation:
    \displaystyle du = (1)/(x) \ dx
  3. Set dv:
    \displaystyle dv = x \ dx
  4. [dv] Integration Rule [Reverse Power Rule]:
    \displaystyle v = (x^2)/(2)

Step 3: Integrate Pt. 2

  1. [Integral] Integration by Parts:
    \displaystyle \int {x \ln x} \, dx = (x^2 \ln x)/(2) - \int {(x)/(2)} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {x \ln x} \, dx = (x^2 \ln x)/(2) - (1)/(2) \int {x} \, dx
  3. Factor:
    \displaystyle \int {x \ln x} \, dx = (1)/(2) \bigg( x^2 \ln(x) - \int {x} \, dx \bigg)
  4. [Integral] Integration Rule [Reverse Power Rule]:
    \displaystyle \int {x \ln x} \, dx = (1)/(2) \bigg( x^2 \ln(x) - (x^2)/(2) \bigg) + C
  5. Factor:
    \displaystyle \int {x \ln x} \, dx = (x^2)/(2) \bigg( \ln(x) - (1)/(2) \bigg) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Myanimal
by
9.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories