201k views
2 votes
Consider the points A (-1, 1), B (1,5) and C (5, 1). M is the midpoint of AB, and N is the

midpoint of BC.
Show that MN is parallel to AC

User Torak
by
7.5k points

1 Answer

1 vote

Explanation:

IN ΔAMN ΔABC

Since MN∣∣BC

∠AMN=∠ABC (Corresponding angles)

∠ANM=∠ACB (Corresponding angles)

∴ΔAMN∼ΔABC(By $$AA similarity criterion)

AB

AM

=

AC

AN

=

BC

MN

(CPST)

Since, M is mid-point of AB,

AM=

2

1

AB,or,

AB

AM

=

2

1

or,

AB

AM

=

AC

AN

=

2

1

AC

AN

=

2

1

5

AN

=

2

1

[∵AC=5cm]

AN=

2

5

cm=2.5cm

Also,

AB

AM

=

BC

MN

=

2

1

7

MN

=

2

1

[∵BC=7cm]

MN=

2

7

=3.5

Ans=AN=2.5cm and MN=3.5cm

solution

User Rchacko
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories