Answer:
16
Explanation:
Given the definitions of f(x) and g(x) below,
f(x) = x^2+ x + 10
g(x) = -5x-3
f(g(x)) = f(-5x-3)
f(-5x-3) = (-5x-3)²+((-5x-3)+10
f(-5x-3) = 25x²+30x+9-5x-3+10
f(-5x-3) = 25x² +25x+16
f(g(x)) = 25x² +25x+16
f(g(-1)) = 25(-1)² +25(-1)+16
f(g(-1)) = 25-25 + 16
f(g(-1)) = 16
Hence f(g(-1)) is 16