Answer:
The rocket will hit the ground after 113.28 seconds.
Explanation:
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
.
This polynomial has roots
such that
, given by the following formulas:
![x_(1) = (-b + √(\Delta))/(2*a)](https://img.qammunity.org/2022/formulas/mathematics/college/465rr0o6pfmdiqm2ydehbyykd0x09vuqk9.png)
![x_(2) = (-b - √(\Delta))/(2*a)](https://img.qammunity.org/2022/formulas/mathematics/college/pybgjzh3k8h66clzz9ips82zkw3e8z3cli.png)
![\Delta = b^(2) - 4ac](https://img.qammunity.org/2022/formulas/mathematics/college/o5bk5fwpzd86hj5u6hnjwe8huzvvjnfril.png)
The height of a rocket, after t seconds, is given by:
![h(x) = -16x^2 + 1812x + 59](https://img.qammunity.org/2022/formulas/mathematics/college/1zc64o9fjbv8ym4deesff5yz5xx2ly77q0.png)
Using this equation, find the time that the rocket will hit the ground.
This is x for which
. So
![-16x^2 + 1812x + 59 = 0](https://img.qammunity.org/2022/formulas/mathematics/college/yl9e9y08isicmu30sgvywzsvq87ub8mwt7.png)
Then
![a = -16, b = 1812, c = 59](https://img.qammunity.org/2022/formulas/mathematics/college/u6rfco0zsjnyn9zphzmsmwj4i5uznrkm81.png)
![\Delta = (1812)^2 - 4(-16)(59) = 3287120](https://img.qammunity.org/2022/formulas/mathematics/college/jzikfqxnwb34b4ax2zs6f1v3s65aqrfw7v.png)
![x_(1) = (-1812 + √(3287120))/(2*(-16)) = -0.03](https://img.qammunity.org/2022/formulas/mathematics/college/ptr4zgsrdi5qn6xuvyq1fnkfi0zhp772oj.png)
![x_(2) = (-1812 - √(3287120))/(2*(-16)) = 113.28](https://img.qammunity.org/2022/formulas/mathematics/college/pnmjceyvyr3f3j0pinun5tm29mbk19z1ff.png)
The rocket will hit the ground after 113.28 seconds.