91.2k views
2 votes
Please help and show workings!

Please help and show workings!-example-1
User Walf
by
4.7k points

2 Answers

1 vote

Answer:


\displaystyle E)\: 162 √(3)

Explanation:

we are given a side a polygon

and said to figure out the area

recall the formula of regular polygon


\displaystyle \: \frac{ {na}^(2) }{4} \cot \left( \frac{ {180}^( \circ) }{n} \right)

where a represents the length of a side

and n represents the number of sides

the given shape has 6 sides

and has a length of
\displaystyle 6√(3)

so our n is 6 and a is 6√3

substitute the value of n and a:


\displaystyle \: \frac{ {6 \cdot \:( 6 √(3) })^(2) }{4} \cot \left( \frac{ {180}^( \circ) }{6} \right)

reduce fraction:


\displaystyle \: \frac{ {6 \cdot \:( 6 √(3) })^(2) }{4} \cot \left( \frac{ { \cancel{180}^( \circ)} ^{ {30}^( \circ) } }{ \cancel{6 \: } } \right)


\displaystyle \: \frac{6 \cdot \: (6 \sqrt{ {3} } {)}^(2) }{4} \cot( {30}^( \circ) )

simplify square:


\displaystyle \: (6 \cdot \: 36 \cdot \: 3 )/(4) \cot( {30}^( \circ) )

reduce fraction:


\displaystyle \: \frac{6 \cdot \: \cancel{36} \: ^(9) \cdot \: 3 }{ \cancel{ 4 \: } } \cot( {30}^( \circ) )


\displaystyle \: 6 \cdot \: 9 \cdot \: 3 \cot( {30}^( \circ) )

simplify multiplication:


\displaystyle \: 162\cot( {30}^( \circ) )

recall unit circle:


\displaystyle \: 162 √(3)

hence, our answer is E

User Liza Shakury
by
4.9k points
3 votes

Answer:


162√(3)

Explanation:

The equation for finding the area of a hexagon with a side length is


(s^23√(3) )/2

insert
6√(3)

and you are left with 162\sqrt{3}

Hope that helps :)

User Aman Verma
by
4.0k points