151k views
3 votes
Someone please help! ​

Someone please help! ​-example-1
User Sab
by
3.4k points

1 Answer

3 votes

Given:


(\sin x)^2+(\cos x)^2=1


\cos \theta = (4√(2))/(7)

To find:

The value of
\sin \theta.

Solution:

We have,


\cos \theta = (4√(2))/(7)

Putting this value in the Pythagorean identity, we get


(\sin \theta)^2+(\cos \theta)^2=1


(\sin \theta)^2+\left((4√(2))/(7)\right)^2=1


(\sin \theta)^2+(16(2))/(49)=1


(\sin \theta)^2+(32)/(49)=1


(\sin \theta)^2=1-(32)/(49)


(\sin \theta)^2=(49-32)/(49)


(\sin \theta)^2=(17)/(49)

Taking square root on both sides, we get


\sin \theta=\pm \sqrt{(17)/(49)}


\sin \theta=\pm (√(17))/(7)

The given value of
\sin \theta is positive. So,
\sin \theta= (√(17))/(7).

Therefore, the value of value
\sin \theta is
\sin \theta= (√(17))/(7).

User Mufazzal
by
4.2k points