Answer:
The boy can throw the ball to a height of 3.85 m on Jupiter
Step-by-step explanation:
We'll begin by calculating the initial velocity at which the ball is thrown on EARTH. This can be obtained as follow:
On Earth:
Acceleration due to gravity (g) = 10 m/s²
Maximum height (h) = 10 m
Final velocity (v) = 0 m/s (at maximum height)
Initial velocity (u) =?
v² = u² – 2gh (since the ball is going against gravity)
0² = u² – 2 × 10 × 10
0 = u² – 200
Collect like terms
0 + 200 = u²
200 = u²
Take the square root of both side
u = √200 m/s
Finally, we shall determine the maximum height of the ball at JUPITER. This can be obtained as followb
On Jupiter:
Acceleration due to gravity (g) = 26 m/s²
Initial velocity (u) = √200 m/s
Final velocity (v) = 0 m/s (at maximum height)
Maximum height (h) =..?
v² = u² – 2gh (since the ball is going against gravity)
0² = (√200)² – 2 × 26 × h
0 = 200 – 52h
Collect like terms
0 – 200 = –52h
–200 = –52h
Divide both side by –52
h = –200 / –52
h = 3.85 m
Thus, the boy can throw the ball to a height of 3.85 m on Jupiter.