Answer:
A. K = 59.5
Step-by-step explanation:
Hello there!
In this case, since this reaction seems to start moving leftwards due to the fact that neither A nor Y are present at equilibrium, we should rewrite the equation:
3C (g) + D (g) <-- --> 2A (g) + Y (g)
Thus, the equilibrium expression is:
![K^(left)=([A]^2[Y])/([C]^3[D])](https://img.qammunity.org/2022/formulas/chemistry/college/8mpj0okobtz6ppaknml9bypusm5lcp1owg.png)
Next, according to an ICE table for this reaction, we find that:
![[A]=2x](https://img.qammunity.org/2022/formulas/chemistry/college/73jmsl0mc5nkt421420gsdydv4fs0t7h97.png)
![[Y]=x](https://img.qammunity.org/2022/formulas/chemistry/college/n4gaz95sk182xhx65d7wloywc2nntcowpg.png)
![[C]=0.651M-3x](https://img.qammunity.org/2022/formulas/chemistry/college/zvoeccy7n2r8afk1jsaikxv9bsh8lgfdwn.png)
![[D]=0.754M-x](https://img.qammunity.org/2022/formulas/chemistry/college/wsvwdxraxrm3ytmn2souwuyipocg9nnvl4.png)
Whereas x is calculated by knowing that the [C] at equilibrium is 0.456M; thus:
![x=(0.651-0.456)/(3) =0.065M](https://img.qammunity.org/2022/formulas/chemistry/college/b0ktqkmapl8h82ae28j1qlxriv5brz5v16.png)
Next, we compute the rest of the concentrations:
![[A]=2(0.065M)=0.13M](https://img.qammunity.org/2022/formulas/chemistry/college/f5a8z9guyv1mt66exldfhzzwsmrf8o44zt.png)
![[Y]=0.065M](https://img.qammunity.org/2022/formulas/chemistry/college/l72m8ze3u8ss9lg841kbw7jx6sz1hgdjfx.png)
![[D]=0.754M-0.065M=0.689M](https://img.qammunity.org/2022/formulas/chemistry/college/pvgihchmr5ctk3lva5olcyinydtewpzkrv.png)
Thus, the equilibrium constant for the leftwards reaction is:
![K^(left)=((0.13M)^2(0.065M))/((0.456M)^3(0.689M))=0.0168](https://img.qammunity.org/2022/formulas/chemistry/college/yao8qrpraxw775na1erhdq15jz1c2ryyuf.png)
Nonetheless, we need the equilibrium reaction for the rightwards reaction; thus, we take the inverse to get:
![K^(right)=(1)/(0.0168)=59.5](https://img.qammunity.org/2022/formulas/chemistry/college/5cen1dml89khk6s72ldtinuz00ursxdgpm.png)
Therefore, the answer would be A. K = 59.5.
Regards!