Given:
The equation of curve is:
![y=(2e^x)/(1+e^x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/pu16kyq4cfssvaiyrlkbvl4pe0rga0q208.png)
To find:
The equation of the tangent line to the given curve at (0,1).
Solution:
We know that the slope of the tangent line at (a,b) is
![m=(dy)/(dx)_((a,b))](https://img.qammunity.org/2022/formulas/mathematics/high-school/r2oi6mxemtzy0up9bzpgmjqgm0fa8d86m0.png)
We have,
![y=(2e^x)/(1+e^x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/pu16kyq4cfssvaiyrlkbvl4pe0rga0q208.png)
Differentiate with respect to x.
![(dy)/(dx)=((1+e^x)(2e^x)'-2e^x(1+e^x)')/((1+e^x)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/2oljcz4mzxtmgr2kmr2io10233cvkeyq90.png)
![(dy)/(dx)=((1+e^x)(2e^x)-2e^x(e^x))/((1+e^x)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/kpzr6rbn8a9dv9vueyk2b7f5roes4up9if.png)
Slope of the tangent is
![(dy)/(dx)_((0,1))=((1+e^0)(2e^0)-2e^0(e^0))/((1+e^0)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zpk7gajkua7qlghihuyuba51tgx3f4ge01.png)
![(dy)/(dx)_((0,1))=((1+1)(2(1))-2(1)(1))/((1+1)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/q3dw6a9uaore2p7cabloaed08tzkbd1vyc.png)
![(dy)/(dx)_((0,1))=((2)(2)-2)/((2)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/962y6wruzsr4xh5r93rtlkvvil58xd5tfh.png)
![(dy)/(dx)_((0,1))=(4-2)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/loarghlvfaa343c1fvu47cy0wv1n24c1s2.png)
on further simplification, we get
![(dy)/(dx)_((0,1))=(2)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/97j2h6u30xl38psqe3nnqyncqo7mki30hc.png)
![(dy)/(dx)_((0,1))=(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/de9aq77src04s8e93i17fpvgvnukf7bwmp.png)
The slope of the tangent line is
and it passes through the point (0,1). So, the equation of the tangent line is
![y-y_1=m(x-x_1)](https://img.qammunity.org/2022/formulas/mathematics/middle-school/vtillwnvtmv4154m1gj6eh3pnty0mf96g6.png)
![y-1=(1)/(2)(x-0)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ib7ck28a86kzpfjc1ec1cnnmkfgva0kvxu.png)
![y-1=(1)/(2)x](https://img.qammunity.org/2022/formulas/mathematics/high-school/rc7ew8hrr9477sy38ew3ira0a843ag4g04.png)
![y=(1)/(2)x+1](https://img.qammunity.org/2022/formulas/mathematics/high-school/3lv6epqq870r0ni3a858sls8l5kvomd7kq.png)
Therefore, the equation of the tangent line is
.