56.2k views
3 votes
Can SOMEBODYYY please do the maths!!! PLeassssssssssssseeeeeeee

Can SOMEBODYYY please do the maths!!! PLeassssssssssssseeeeeeee-example-1
User Learie
by
4.6k points

1 Answer

2 votes

Answer:

see below

Explanation:

Question-6:

we are given a equation


\sf \displaystyle \: \log_(4)( - x) + \log_(4)( 6 - x) = 2

to solve so

recall logarithm multiplication law:


\sf \displaystyle \: \log_(4)( - x * (6 - x)) = 2

simplify multiplication:


\sf \displaystyle \: \log_(4)( - 6 x + {x}^(2) ) = 2

remember
\displaystyle \log_(4)(4^2)=2

so


\sf \displaystyle \: \log_(4)( - 6 x + {x}^(2) ) = \log_(4)( {4}^(2) )

cancel out
\log_4 from both sides:


\sf \displaystyle \: - 6 x + {x}^(2) = {4}^(2)

simplify squares:


\sf \displaystyle \: - 6 x + {x}^(2) = 16

move left hand side expression to right hand side and change its sign:

since we are moving left hand side expression to right hand side there'll be only 0 left in the left hand side


\sf \displaystyle \: - 6 x + {x}^(2) - 16 = 0

rewrite it to standard form i.e ax²+bx+c=0


\sf \displaystyle \: {x}^(2) - 6x - 16 = 0

rewrite -6x as 2x-8x:


\sf \displaystyle \: {x}^(2) + 2x - 8x - 16 = 0

factor out x and 8:


\sf \displaystyle \: x {(x}^{} + 2) - 8(x + 2) = 0

group:


\sf \displaystyle \: (x - 8){(x}^{} + 2) = 0


\displaystyle \: x = 8 \\ x = - 2


\therefore \: x = - 2

Question-7:

move left hand side log to right hand side:


\displaystyle \: \log(x ) + \log(x - 21) = 2

use mutilation logarithm rule;


\displaystyle \: \log( {x}^(2) - 21x) = 2


\log(10^2)=2 so


\displaystyle \: \log( {x}^(2) - 21x) = \log({10}^(2) )

cancel out log from both sides:


\displaystyle \: {x}^(2) - 21x = 100

make it standard form:


\displaystyle \: {x}^(2) - 21x - 100= 0

factor:


\displaystyle \: {(x} + 4)(x - 25)= 0

so


\displaystyle \: x = 25

User Sukhhhh
by
5.5k points