Answer:
see below
Explanation:
Question-6:
we are given a equation
![\sf \displaystyle \: \log_(4)( - x) + \log_(4)( 6 - x) = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/psp1qzp4fv1bsn4o9l6bmmmkx6y4snzwdj.png)
to solve so
recall logarithm multiplication law:
![\sf \displaystyle \: \log_(4)( - x * (6 - x)) = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/whrih3bzbuidl15wwlzd9bin8jqqidi6bv.png)
simplify multiplication:
![\sf \displaystyle \: \log_(4)( - 6 x + {x}^(2) ) = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/is7zecdb3ve1kfcqvwfwsxoqxuip7fb4t5.png)
remember
![\displaystyle \log_(4)(4^2)=2](https://img.qammunity.org/2022/formulas/mathematics/high-school/gaeifvhd16zxfherdzn8xhibm0jjy0mshg.png)
so
![\sf \displaystyle \: \log_(4)( - 6 x + {x}^(2) ) = \log_(4)( {4}^(2) )](https://img.qammunity.org/2022/formulas/mathematics/high-school/suvcent91fssqjm9qlp83ygu7xwntapuxm.png)
cancel out
from both sides:
![\sf \displaystyle \: - 6 x + {x}^(2) = {4}^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jr3yo01xix6kw1cwyz7sn2qg5qsk6kj8j3.png)
simplify squares:
![\sf \displaystyle \: - 6 x + {x}^(2) = 16](https://img.qammunity.org/2022/formulas/mathematics/high-school/qjxdbpc7ir4bc94zn3tb6g4ylfmaati752.png)
move left hand side expression to right hand side and change its sign:
since we are moving left hand side expression to right hand side there'll be only 0 left in the left hand side
![\sf \displaystyle \: - 6 x + {x}^(2) - 16 = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/xxqwrpb9qa5dqa68zz3y0gjjjoh5mr1jqo.png)
rewrite it to standard form i.e ax²+bx+c=0
![\sf \displaystyle \: {x}^(2) - 6x - 16 = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/5hzi2g94401nodz8cbm22313d6j68mhlzm.png)
rewrite -6x as 2x-8x:
![\sf \displaystyle \: {x}^(2) + 2x - 8x - 16 = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/8rlqwstjnd73xcj16mz5uodog50bq3bptl.png)
factor out x and 8:
![\sf \displaystyle \: x {(x}^{} + 2) - 8(x + 2) = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/9gn8yktdia77rsv7lqqix756s48qxbzarv.png)
group:
![\sf \displaystyle \: (x - 8){(x}^{} + 2) = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/a4ega4cietvktqix3gssq95wxl781659dx.png)
![\displaystyle \: x = 8 \\ x = - 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/4y9lamhobh3gpmz7og1yl4715f0nto538k.png)
![\therefore \: x = - 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ghv1lg7xnimre8ko9heikld419odopye8z.png)
Question-7:
move left hand side log to right hand side:
![\displaystyle \: \log(x ) + \log(x - 21) = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/gg808do7382vjr8jmhvd0nmizfsuqe9vc0.png)
use mutilation logarithm rule;
![\displaystyle \: \log( {x}^(2) - 21x) = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ziql9v8rcbsp7h9o7nrof5du5a45vho4yv.png)
so
![\displaystyle \: \log( {x}^(2) - 21x) = \log({10}^(2) )](https://img.qammunity.org/2022/formulas/mathematics/high-school/e200nhtlv4y6jkfj7btrinhmo0t4jnwdao.png)
cancel out log from both sides:
![\displaystyle \: {x}^(2) - 21x = 100](https://img.qammunity.org/2022/formulas/mathematics/high-school/jldop1rbg63hplxl45mda322gyg5480i7u.png)
make it standard form:
![\displaystyle \: {x}^(2) - 21x - 100= 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/9l80zh6xmfrjglvkw19mcr5a3xbkhcallm.png)
factor:
![\displaystyle \: {(x} + 4)(x - 25)= 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/7tdrggmdpy7drwulldhpf3ngqf6zgdgutv.png)
so
![\displaystyle \: x = 25](https://img.qammunity.org/2022/formulas/mathematics/high-school/cyp9qkdpl1pwkvr5toxqtd0ygckol07csg.png)