50.5k views
2 votes
A regular hexagon is inscribed in a circle with a diameter of 8 inches.

a. What is the perimeter of the hexagon?

b. What is the area of the hexagon?

Step by step please!!!

A regular hexagon is inscribed in a circle with a diameter of 8 inches. a. What is-example-1

1 Answer

0 votes

Answer:

b) 41.6 square inches

Explanation:

A regular hexagon is inscribed in a circle with a diameter of 8 inches.

Step 1

We find the radius

Radius = Diameter/2

= 8 inches/2 = 4 inches

a. What is the perimeter of the hexagon?

b. What is the area of the hexagon?

An hexagon has 6 sides

The number of angles in an hexagon is calculated as:

[(Number of sides - 2) x 180]

= (6 - 2) x 180 = 720 ÷ 6 = 120°

The hexagon into 6 equilateral triangles with 4 for each of its sides.

The area of one of the triangles:

Height = 2√3

- one triangle's area = (1/2)bh = (1/2)(4)(2√3) = 4√3

The area of the hexagon by multiplying the one triangle's area by 6:

6 x 4√3 = 24√3 square inches

= 41.569219382 square inches

Approximately = 41.6 square inches

User Gxela
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories