Answer:
![[H_3O^+]=4.7x10^(-3)M](https://img.qammunity.org/2022/formulas/chemistry/high-school/7ap158urie6tlcappf1i6x97czb7eewohn.png)
Step-by-step explanation:
Hello there!
In this case, since the ionization of benzoic acid is:
![HC_7H_3O_2+H_2O\rightleftharpoons C_7H_3O_2^-+H_3O^+](https://img.qammunity.org/2022/formulas/chemistry/high-school/pb51k9ixprz4504eyuzfyusq8eqt3mh6a1.png)
Whereas the corresponding equilibrium expression is:
![Ka=([C_7H_3O_2^-][H_3O^+])/([HC_7H_3O_2])](https://img.qammunity.org/2022/formulas/chemistry/high-school/kdm7lgj3g0o78hgeq8fuxlv9m7h5lx4yka.png)
Now, we insert the acidic equilibrium constant and the reaction extent x, to write:
![6.3x10^(-5)=(x^2)/(0.35M)](https://img.qammunity.org/2022/formulas/chemistry/high-school/pfr6nahd9v1w08j3t14i549mkewoevqxvg.png)
Thus, by solving for x, we obtain:
![x=\sqrt{6.3x10^(-5)*0.35}\\\\x=4.7x10^(-3)M](https://img.qammunity.org/2022/formulas/chemistry/high-school/6b7bdmrv5bp8y6hxrhvvoyfv4k2f2tfb87.png)
Which is also:
![x=4.7x10^(-3)M](https://img.qammunity.org/2022/formulas/chemistry/high-school/9fi17xywm8yt9qol3rzv71pci41p2sf28a.png)
Best regards!